DOI 10.1515/tvsbses-2015-0012

THE NEED OF SPECIAL TECHNIQUE IN CRISIS MANAGEMENT

Peter LIPTÁK¹, Ivan KOPECKÝ², Ján ŠTRBA³, Ivan DLUGOŠ⁴

Review article

Abstract:	Operation of special equipment is possible in crisis situations. It is because special equipment is designed for operation in non-standard often extreme conditions and situation, it is available, it has a high degree of crossing capability and it is able to provide basic living conditions even in field, e.g. provision of power for hospital, transportation of wounded and injured persons, supplies, medical care in field conditions, delivery of potable and utility water etc. The authors in the paper deal with a possibility to provide electric energy through advanced renewable sources, especially in meeting tasks in areas with no public mains, possible supplies of potable and non-potable water, embedding such assets into mobile systems. The authors in publication summarize results of research within the "Use of renewable sources of energy in practice project". System of modeling and computer-aided simulation of renewable sources of energy has been proposed within this project. Application of a system for designing of power systems in logistic containers is expected. The knowledge on power balance of logistic containers operated by the SR Armed Forces in missions abroad is summarized in the last chapter of the paper. Experiences with operating the equipment in crisis and extreme conditions have proved a possibility to export and deploy machines and weaponry equipment of the SR Armed Forces into extreme climatic conditions, e.g. out of European conditions etc.
Keywords:	Crisis situations, renewable sources of energy, photovoltaic collectors, logistic container, power systems, mobile assets of crisis management.

Introduction

To provide basic human needs in solving crisis situation there is a need to provide an affected area with energy and water. The authors within a research program have been solving such provision assuming that equipment will be deployed in different environs and will use energy from solar radiation and wind energy as well in addition to standard initial energy and power supply. Mobile solution has been proposed, namely embedding the equipment and devices into containers that are transportable to a destination by a rotor-wing by a truck or a vessel. One of the prepositions for a possible commissioning of the equipment is a presumption of a machine quality and its reliability. equipment within limits of operational parameters. In operational practice of special equipment, e.g. machines and equipment (engineer equipment)

the repairmen and operators challenged a task to create conditions to use some selected equipment, e.g. electric devices and appliances in critical situations as well, e.g. in humanitarian relief, in military and peace observation missions of international organizations or within international exercises. With regard to a fact, that nearly always in such situations machines and equipment is to be deployed, including electric machines, the experience in this area was generalized as a background aiming to start a technical preparation for next missions and their logistic support.

Materials and methods

Under a "CRISIS SITUATION"notion for purposes of this paper we understand an unplanned, specific situation resulting in:

¹ Trenčín University of Alexander Dubcek in Trenčín, Faculty of Special Technology, Trenčín. Slovak Republic, peter.liptak@tnuni.sk

² Trenčín University of Alexander Dubcek in Trenčín, Faculty of Special Technology, Trenčín. Slovak Republic, ivan.kopecky@tnuni.sk

³ Trenčín University of Alexander Dubcek in Trenčín, Faculty of Special Technology, Trenčín. Slovak Republic, jan.strba@tnuni.sk

⁴ VŠB - Technical University of Ostrava, Faculty of Safety Engineering, Ostrava, Czech Republic, ivan.dlugos@vsb.cz

DOI 10.1515/tvsbses-2015-0012

- Threat to persons, environment, property in a larger scale.
- Presumptions for a rise of such situation can be determined only with a low probability.
- The situation occurs resulted from an unpredictable environmental situation (e.g. disasters and casualties, earthquakes, floods etc.), from unpredictable activity of persons (e.g. terrorist attacks etc.), unthinkable crashes of systems and facilities, (e.g. nuclear power plant accident resulting from disasters etc.), and other unpredictable situations.

From a point of view of providing a solution for such situation there is a need to be ready for such solution in terms of being equipped with appropriate equipment, material, and assets. The authors of the paper deal with a special equipment under their purview.

Quality and operational reliability are the basic requirements laid on special equipment. Under quality and operational reliability notion for this paper we are considering quality of a whole technological cycle, quality of a machine and facility as a whole.

In literature an operational reliability (or service dependability) notion is characterized as a feature of a product enabling meeting specified functions within the permitted tolerance under given operating conditions and in a requested operating period. (Kružliak, 2002) Service dependability of a product, facility, and machine in particular contains ability:

- To work permanently within the permitted tolerance of required parameters,
- To keep a repair ability (to retain a possibility to remove failures),
- To withstand a short-term overloading (resistance of the product),
- To work for a certain period even with small damages, i.e. with worsened operating parameters (product 's viability),
- Maintenance undemandingness and its small range (maintenance friendlineness and efficiency).

From a user point of view the reliability is perceived as an integral set of technical, qualitative, economical, ergonomic and other properties of a product, influencing its total technical life . (Bukoveczký and Bílý, 1986). Within reliability theory we differentiate:

As extreme conditions are considered all conditions, that are beside values being typical for Central European temperate climate zone, Tab. 1.

- properties,
- reviewed areas and their basic characteristics,
- phenomena, conditions and activities,
- variable working values,
- failures,
- · indicators of reliability,
- indicators of storage stability,

• life-cycle indicators,

- indicators of maintainability,
- complex indicators,
- testing,
- backup,
- Indicators of a failure-free operation.

Tab. 1 Characteristics of a temperate cli	mate zone
The lowest temperature of air	-40 °C

The lowest temperature of air	-40 °C
The highest temperature of air	+40 °C
The highest relative humidity	95 %
The highest absolute humidity	60 g.m ⁻³
The highest intensity of solar radiation	1120 W.m ⁻²
The highest intensity of thermal radiation	600 W.m ⁻²
The highest speed of air	20 m.s ⁻¹

Area, in which the selected equipment and machines were reviewed, is characterized as environs with increased corrosion aggressiveness, dusty environment with nonflammable dust, however the one deteriorating dielectric permittivity and electric piercing strength due to its conductivity, environment with quakes and environment with biological vermin.

Various types of simulation chambers are used when simulating the effects of environment on parts and devices. Inside these chambers there is such simulating environment established, where the product application is supposed to be, e.g.:

- Humid heat trial cyclical mode;
- Humid heat trial acyclic mode;
- Mildew trial;
- Air-tightness trial;
- Solar radiation trial;
- Atmospheric pressure trial;
- Temperature alternation trial, frost trial;
- Dry heat trial;
- Salt-haze trial;
- Low pressure trial;
- Dust trial.

In case when equipment is deployed in conditions with an increased concentration of air pollutants in long-shore areas we recommended the following tests:

- corrosion test in a condensation chamber to verify resistance of materials and surface protection, when it relates an effect by an increased humidity or an increased concentration of SO₂ with no other effecting factors,
- corrosion test in a salt haze verifies material resistance and surface protection in long-shore atmosphere with a decisive factor - a sea water aerosol,
- solar radiation trial verifies the product resistance to light and thermal effects of solar radiation,
- dust and sand trial simulation of desert conditions,
- · dry and wet heat test,
- mildew trial simulation of material having been biologically invaded,
- vibration trial.

These trials has been proved by a next operation of equipment and material in practice, e.g. in areas of equatorial Africa and on Cyprus Island.

As we monitored the renovated objects, we chose the failure and renovation flows as reliability criteria. Properties of renovated objects are expressed by H(t) value, a mean number of failures of a renovated object for t period:

$$H(t) = \frac{1}{N} \sum_{i=1}^{N} n_i(t) \tag{1}$$

where ni(t) is a number of failures of the *i*-th renovated object during *t* operating period, *N* is a number of objects being reviewed.

From statistics point of view, a failure flow characteristics is appropriate, that we expect in a short time period Δt . This characteristic is expressed by a relation:

$$\hat{h}(t) = \frac{\Delta H(t)}{\Delta t} = \frac{\sum_{i=1}^{N} \left[n_i (t + \Delta t) - n_i(t) \right]}{N \cdot \Delta t}$$
(2)

where $\Delta H(t)$ is an increase of an average number of failures for a short time interval Δt , or an average number of failures in a time interval $(t, t+\Delta t)$. Due to statistical assessment of a real number of failures during 1 year operating period, it was possible to consider, that the failures of a renovated object are ruled by an exponential rule of distribution with a λ failure intensity. In a particular situation, was a value of a mean number of failures of a renovated object for 1 operating year (tests were made 1 month after completion of a rain season) a number from interval (0, 1 - 0, 4) in a so called stable state of reliability (test run was made before exporting abroad, in ageing state we do not recommend to operate an equipment abroad).

Coefficient of technical usage:

$$K_{tv} = T / \left(T + T_p + T_o\right) \tag{3}$$

is a readiness coefficient:

$$K_p = T / (T + T_o) \tag{4}$$

where T is an average period between failures of a renovated object, T_p is an average period of a shut-down, T_a is an average repair period.

From a view of a possible increase of machine and equipment reliability, being operated in climate conditions we have chosen a backing up method. Backup is one of basic methods in improving reliability of machines and equipment. This relation is applied for parallel arrangement of elements (Fig. 1):

$$R_{p}(t) = 1 - \prod_{i=1}^{k} 1 - \exp\left[-\left(\frac{t}{a_{i}}\right)^{b_{i}}\right] = 1 - \prod_{i=1}^{k} F_{i}(t) \quad (5)$$

where $R_p(t)$ is a failure-free operation of a parallel system, $F_i(t)$ is a probability of a failure risk in particular elements of the system.



Fig. 1 System of elements with parallel arrangement of elements

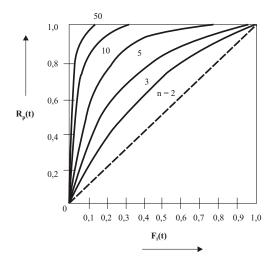


Fig. 2 Relation of a probability of a parallel system failure less operation to a number of elements

Relation of increasing reliability of the system to the number of elements in a parallel arrangement is in the Fig. 2.

Examples and application of equations can be seen in publications. (Lipták and Stodola, 2009; Lipták and Stodola, 2011)

Even though a backing up increases a complexity, so its acquisition costs, in a probable deployment for special tasks in extreme climate conditions, this method has been proved as a suitable.

From a view of a special equipment crisis management the following needs have been considered:

- Access and availability, ability to pass a water obstacle; mud, mountain and forest terrain, on the road and by air.
- Mobility and equipment and systems transportation.
- Provision of electric energy.
- Provision of potable and non-potable water.
- Provision of medical and health service.

For purposes of this paper we are presenting possible ways how to provide for electric energy, potable and service water supplies and a container system to transport such equipment and systems.

Current electric energy sources used for mobile logistic assets in ISO 1C containers

Electric source units in ISO 1C containers are assigned for a production and distribution of electric energy as a backup source to provide operation of electric facilities in field conditions. They include a drive unit, a plant producing electric energy, transformer station and distribution wiring net. The power block is installed in the ISO 1C container, it is sound and thermal proof, tempering and airing is provided with embedded exhaust blowers and through orifices with closing blinds for airing. The container floor is designed as a leak-proof tub assigned to catch possible leakage of operating liquids. The container includes a sales stock for distribution wiring and power block accessories. ISO 1C container is equipped with large door with a visor and detachable panels for an easy access for a quotidian maintenance. (Šúri, 2006)

Electric sources requirements for mobile assets

One of the most important requirements to electric sources for mobile assets is applicability in a micro climate area with an N14 (STN 03 8206) climate:

- Temperature ranging from -35 °C to +55 °C,
- Relative humidity of air up to 30 % at temperature of +25 °C,
- Velocity of air flow up to 20 m.s⁻¹ from all directions.

Atmospheric precipitations in form of rain with intensity of 3 mm.min⁻¹ falling 30° angle wise in all directions. (Mikurčík, 2003)

They need to be produced so that can be connected to several kinds of distribution systems:

• TN - C, 3 + PEN, 400/231 V - the most common four-line wire distribution system,

Designation and marking of a logistic container	Voltage system	Maximum power input [kW]	Output of a source itself [kW]
ISO 1C container - social	TN.S 3+N+PE 400/230V AC 50Hz	18,2	0
ISO 1C container - water tank	TN.S 1+N+PE 1x 230V, 50Hz	1,25	0
ISO 1C container - accommodation 2-bed	TN.S 3+N+PE 400/230V AC 50Hz	5,5	0
ISO 1C container - accommodation 4 bed	TN.S 3+N+PE 400/230V AC 50Hz	5,5	0
ISO 1C container - briefing folding 3- wall	TN.S 3+N+PE 400/230V AC 50Hz	7,5	0
ISO 1C container - office	TN.S 3+N+PE 400/230V AC 50Hz	6	0
ISO 1C container - refrigerator for deceased	TN.S 3+N+PE 400/230V AC 50Hz	5,1	0
ISO 1C container - refrigerator, two chamber	TN.S 3+N+PE 3x 400V, 50Hz	4,8	Combustion engine
ISO 1C container - surgery ward	TN.S 3+N+PE 400/230V AC 50Hz	9,5	
ISO 1C container - mobile workshop asset of "A", "B" and "C" types	TN.S 3+N+PE 400/230V AC 50Hz	15	5,1

Tab. 2 Electric installation parameters of some logistic container working places

- TN S, 3 + PE + N, 400/231 V distribution system used in the world,
- TT, 3 + PE + N, 400/231V distribution system, which is not much used, however it exists in electric wiring of special equipment,
- IT, 3 + PE + N, 400/231 V an isolated system being used mainly in special or medical equipment and in power equipment for insular power facilities. (Lipták et al., 2005)

Water treatment assets

They are mostly applied for:

- An emergency water supply in crisis situations as a part of an integrated rescue system,
- Hastened potable water supplies as a part of humanitarian, development and military operations,
- Temporal or permanent replacement of smaller stationary water treatment stations,
- Provision of potable water for sport and cultural events.

Whole range of processes depending on quality of intake water and on required output of water treatment station is used to provide potable water of quality, or service water and water for industrial purposes (including demineralized water).

Technological equipment for water treatment

- 1. A softening equipment, serving to remove high content of magnesium and calcium.
- 2. The equipment removing ferrum and magnesium from potable or service water.
- 3. Ultraviolet equipment, replacing a standard chemical coagulating process of potable water production. The equipment works with higher efficiency, quality of treated water does not depend on accuracy of sensor dose setting and the process produces no waste sediments as for

a standard treatment. In addition the purified water is separated from unpurified with a stable barrier, so water having already been treated can not become contaminated with unpurified water from a source. Treated water is bacteriologically safe. Whole treating process is automated and a person fumiliar with operation manual is able to operate it.

- 4. A reverse osmotic module serves for a production of de-mineralized water and for production of potable water from sea water as well.
- 5. Sanitary module serves to prevent the treated water from a possible contamination with deseasecarrying nuclea. It can be solved with an UV lamp, for a short-term storage and for a long-term storage a dosage of chemical agents or ozon is used.

Described typical technological units are available separately or as a part of a product serving for a treatment of potable or service water. The equipment with output of 35 - 3000 liters per hour are available, they can be as mobile one, including power generator or stationary ones. The both cases can be connected to a local mains, if available.

The mentioned equipment is produced in following variants:

- for fresh water with an appropriate contents of inorganic salts for potable water purposes,
- for sea, fluviomarine or badly contaminated fresh (surface) waters,
- for contamination with combat agents or other toxicants,
- for rescue and fire-fighting corps in solving disasters (an autonomous water station system with lighting, workshop or defined shelter as a dressing station or a workshop with basic equipment). (Áč, 2015)

Average water consumption

In Germany an average consumption of potable water is 130 liters per person and a day - that is very economizing comparing with other

Tab. 3 Technical data of water treatment	station for provision of the	reated water 120 l per a	day and a person

Number of customers	up to 500	from 500 to 1000	from 1000 to 1500
Dimensions of water treatment container ISO1C /lxwxh/ [mm]	5800x2178x2140		
Max. need of potable water per day [m ³]	6	12	18
Max. need of service water per day [m ³]	54	108	162
Input e.g. SVK - MÚPV 5	4 m ³ .h ⁻¹ of potable water 15 kW		
Electric input			
Weight [kg]	9 500		
Supply of chemical agents for water treatment	150 m ³ of potable water		

West-European countries. The Swiss and Italians consume in average 250 liters per day and a person. In the Slovakia nowadays an average consumption is about 120 liters per person and a day.

In average only 4 liters of water are used for cooking and drinking. 55 liters are used in a bathroom, 32 liters to flush the toilets, 25 for washing down and 8 liters for washing up.

It is possible to define operating parameters of a water treatment station to be used in a particular crisis situation based on above mentioned statistic data by Tab. 3.

Results

One of the most ecological kinds of energies is electric energy obtained through a direct transformation of solar radiation, which has been known since the 19th century. There is a large excess of solar energy impinging the Earth's surface, however with a low density, and it is featured by a seasonal and daily variability influenced by weather as well. However majority of PV (Photo Voltaic) systems do not need a direct solar radiation.

Fig. 3 Examples of using photovoltaic systems on mobile equipment. (Kopecký and Rakúsová, 2014)

Fig. 4 The most used constructions of wind turbines: a, b - with a vertical axis, c - with a horizontal axis (Kopecký and Rakúsová, 2014)

Recently the wind power engineering has marked a huge development with a yearly increase of output

more than 30 %. Nowadays the wind power stations are routinely built with output of 1,5 - 2,5 MW. The wind turbines are used with a diameter from 0,4 m to 80 m and with output from 0,25 kW up to MW order.

Water treatment station is designed for purposes resulted from emergency situations (mainly floods), when water supplies with clean potable and service water from sources located in steady facilities are impossible.

It is assigned for surface water treatment; it removes disease-carrying nuclei, poisonous, radioactive and biological agents from water, mechanical impurities, malodor, savors and coloration. So that it can be used in various variants of emergency situations.

Its construction is in a container version in order to enable a light and swift handling that is needed to solve crisis situations. It contains folding wheels, which can be used if needed and to be transported simpler to a destination. Water treatment station for crisis situations must provide:

- Pumping of unpurified water from a water source,
- Chemical treatment of an unpurified water/ disinfection, softening, purifying/; water softening takes place through resin exchanger based on regeneration with sodium chloride,
- Filtration through activated carbon, a fine filter catches tiny mechanical impurities in untreated water,
- Final water treatment disinfection with sodium peroxide, flavoring with citric acid,
- Pumping through and subsequent filling the tanks with purified water so that it matches all indicators of water quality. The last process before a distribution itself is a sanitary safety of water disinfection with chlorination. (so its bacteriological cleanlineness is secured). And that is because potable water must have high requirements for quality as by the STN 75 7111 standard, it must contain no disease-carrying nuclea. Service water must be also hygienically clean, it is used for washing, having bath and industrial purposes.

Fig. 5 Mobile versions of water treatment (MSRO 140, SVK - MÚPV 5)

Conclusion

The authors in publication summarize results of research within the "Use of renewable sources of energy in practice" project. System of modeling and computer-aided simulation of renewable sources of energy has been proposed within this project. Application of a system for designing of power systems in logistic containers is expected.

Experiences with operating the equipment in crisis and extreme conditions have proved a possibility to export and deploy machines and weaponry equipment of the SR Armed Forces into extreme climatic conditions, e.g. out of European conditions etc. With regard to development of combat activities within the theatre of operation, where a single concept in equipment is preferred in different climatic conditions, an importance of equipment adaptation to operation in various conditions is still increasing. Such adaptation is to be taken into consideration in designing equipment, as well as during logistic support of their activities as well as in planning their operation. Also published lessons learned showed a possible economical approach e.g. through a possible extension of a lifetime of some technical equipment (pressure vessels, heavy current equipment, lifting equipment) with a sustained needed operating reliability.

In terms of integration into security structures the published paper relates with a need to implement a single system of quality assessment, codification and standardization. In future it is needed to pay attention to this area with regard to a unified assessment of an operating reliability of special equipment.

It is expected, that published solutions will be used in special technique development, especially in projects, where FŠT TnU AD participates.

References

- ÁČ, V. (2015).: *Modelovanie a počítačové simulácie systémov obnoviteľných zdrojov energie*, Čiastková správa z riešenia projektu ITMS č. 26220220083. Trenčín: TnUAD v Trenčíne.
- BUKOVECZKÝ, J.; BÍLÝ, M. (1986).: Životnosť a spoľahlivosť strojov. Bratislava: SVŠT Bratislava.
- KOPECKÝ, I.; RAKÚSOVÁ, D. (2014).: Hybridné fotovoltické zariadenia v urbanizovaných prostrediach. In: *TRANSFER 2014* - 15. medzinárodná vedecká konferencia, Trenčín, 23. - 24. október 2014.
- KRUŽLIAK, J. (2002).: Prevádzková spoľahlivosť, diagnostika a údržba ženijných strojov. Liptovský Mikuláš: Vojenská akadémia Liptovský Mikuláš.
- MIKURČÍK, J. (2003).: Kodifikačné minimum. BULL-1-3, Bulletin č. 3, VSVaP Trenčín.
- LIPTÁK, P.; KOPECKÝ, I.; GALETA, A. (2005).: *Špeciálna technika. Časť Stroje a zariadenia.* Trenčín, ISBN 80-8075-053-X.
- LIPTÁK, P.; STODOLA, J. (2009).: *Spoľahlivosť strojov a zariadení určených pre špeciálnu techniku*. Vysokoškolská učebnica. TnU AD v Trenčíne, ISBN 978-80-8075-418-1. EAN 9788080754181.
- LIPTÁK, P.; STODOLA, J. (2001).: Dependability Engineering for Special Purpose Machines and Equipment. Medzinárodná monografia vydaná v Anglickom jazyku. TnU AD v Trenčíne, ISBN 978-80-8075-481-5. EAN 9788080754815. P.100.
- ŠÚRI, M. 2006.: Solar Electricity and Prospects of its Generation in Slovakia. In.: Životné prostredie. 40.